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Abstract

Triple circular arc cracks problems subjected to shear stress in half-plane elasticity is investigated.
Modified complex potentials (MCP) with the free traction boundary condition are applied to
formulate the hypersingular integral equation (HSIE) for the problems. The unknown crack
opening displacements (COD) of the HSIE are solved numerically by using the appropriate
quadrature formulas. Mode I and Mode II of nondimensional stress intensity factor (SIF) at all
cracks tips are presented for the problems of three adjacent circular arc cracks, three circular
arc cracks with dissimilar radius and three circular arc cracks in series in a half-plane. The
results exhibit that as the crack opening angle increases and the distance of cracks closer to the
boundary of half-plane, the nondimensional SIF increases. This indicates that the strength of
material becomes weaker and the tendency of material to fail is higher.

Keywords: half-plane; hypersingular integral equation; stress intensity factor; triple circular arc
cracks.
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1 Introduction

Structural failure may occur for many reasons, including defects in the materials, loading un-
certainties, and natural disasters. Presence of cracks is one of the causes that might lead to mate-
rial failure as it may weaken the strength of materials. Many researchers have proposed various
methods to formulate the cracks problems in a half-plane, infinite plane, or bonded dissimilar
materials.

Weakly singular integral equation by [3], hypersingular integral equation by [4] and singular
integral equation by [7] were applied to formulate curved cracks problems in a half-plane elastic-
ity. Potential theory was proposed for the contact problems and crack in half-plane of transversely
isotropic piezoelectric materials by [10]. A distributed dipole technique is used by [9] to anal-
yse the problem for multiple cracks of branced, kinked and straight cracks in a half-plane. [14]
calculated the stress intensity factor for cracks in an orthotropic half-plane using the dislocation
technique associated with the Cauchy singularity and Fourier transform in the complex form.
[15] developed the analysis of cracks problems under mixed-mode condition in an orthotropic
half-plane. The cracks problems in a half-plane for more complicated crack configurations were
considered by [8].

Recently, the problems of triple cracks have drawn the attention of numerous researchers. The
stress intensity factors for the three cracks problem of Griffith cracks on the surface of a pair of
nonidentical infinite elastic half-spaces was analysed by [6]. Meanwhile, the stress magnification
factors of three coplanar Griffith cracks in a sandwiched of two identical orthotropic half planes
was calculated by [5]. [18] formulated the three collinear and parallel circular arc cracks problems
using boundary element analysis. [12] applied the Schmidt method for the three cracks at the
interface of a graded layer bonding two different materials. Three equal collinear cracks in an
orthotropic solid and a homogeneous elastic were considered by [17]. [13] studied the dynamic
stress intensity factors in an orthotropic plate subjected to time-harmonic disturbance for the case
of three collinear cracks. [1] investigated the three cracks of collinear unequal smooth cracks of
an isotropic infinite plate with coalesced yield zones by using the modification of Dugdale model.

In this paper, the problems of triple circular arc cracks in a half-plane elasticity is formulated
into HSIE using the MCP and traction free boundary condition. The cracks are mapped into the
real axis and are solved numerically. Mode I and Mode II of nondimensional SIFs are discussed
and analysed graphically.

2 Mathematical Formulation

The complex potentials of the crack problem is formulated by utilising the complex variable
function method. The stresses (σx, σy, σxy), the resultant force functions (X,Y ) and the displace-
ments (u, v) can be demonstrated by the two complex potentials Φ(ξ) = φ′(ξ) and Ψ(ξ) = ψ′(ξ) as
follows [16]

σx + σy = 4ReΦ(ξ), (1)

σy + iσxy = 2ReΦ(ξ) + ξΦ′(ξ) + Ψ(ξ), (2)

f = −Y + iX = φ(ξ) + ξφ′(ξ) + ψ(ξ), (3)

2G(u+ iv) = κφ(ξ)− ξφ′(ξ)− ψ(ξ), (4)
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where ξ = ξx + iξy , v is the Poisson’s ratio, G is the shear modulus of elasticity, κ = 3 − 4v and
κ = (3 − v)/(1 + v) are the plane strain and stress problems respectively. A conjugated value is
described by the bar over a function. By differentiating Equation (3) with respect to ξ as

N + iT =
d

dξ
(−Y + iX)

= φ′(ξ) + φ′(ξ) +
dξ̄

dξ
(ξφ′′(ξ) + ψ′(ξ)),

(5)

the derivative in a specified direction (DISD) can be defined. The known normal and tangential
tractions are represented by N and T respectively.

For the problem of cracks in a half-plane elasticity associatedwith the condition of traction free
at the boundary of half-plane, themodified complex potentials (MCP) is applied. MCP constitutes
of the principal and complementary parts describe as

φ(ξ) = φp(ξ) + φc(ξ), (6)
φ′(ξ) = φ′p(ξ) + φ′c(ξ), (7)
ψ(ξ) = ψp(ξ) + ψc(ξ), (8)
ψ′(ξ) = ψ′p(ξ) + ψ′c(ξ), (9)

where φp(ξ), φ′p(ξ), ψp(ξ), ψ′p(ξ) and φc(ξ), φ′c(ξ), ψc(ξ), ψ′c(ξ) represented the principal and com-
plementary parts respectively. The principal part is attained from the crack opening displacements
(COD) distribution along the crack faces in a problem of an infinite plate. The complex potentials
of the principal part can be defined as

φp(ξ) =
1

2π

∫
L

g(µ)dµ

µ− ξ , (10)

φ′p(ξ) =
1

2π

∫
L

g(µ)dµ

(µ− ξ)2 , (11)

ψp(ξ) =
1

2π

∫
L

g(µ)dµ

µ− ξ +
1

2π

∫
L

g(µ)

(
dµ̄

µ− ξ −
µ̄dµ

(µ− ξ)2

)
, (12)

ψ′p(ξ) =
1

2π

∫
L

g(µ)dµ

(µ− ξ)2 +
1

2π

∫
L

g(µ)

(
dµ̄

(µ− ξ)2 −
2µ̄dµ

(µ− ξ)3

)
. (13)

COD is the unknown function which signifies by the g(µ) and is interpreted by

g(µ) =
2G

i(κ+ 1)

[
(u(µ) + iv(µ))+ − (u(µ) + iv(µ))−

]
, µ ∈ L. (14)

The displacements at a point µ of the upper and lower parts of crack faces denote by (u(µ) +
iv(µ))+ and (u(µ)+ iv(µ))− respectively. The traction at the boundary of half-plane caused by the
principal part is eliminated by the complementary part. The condition of traction free along the
boundary of half-plane (Lb), can be expressed by letting Equation (3) equal to zero as

φ(ξ) + ξφ′(ξ) + ψ(ξ) = 0, ξ ∈ Lb. (15)

Next, using Equations (6) - (8), the condition (15) along the boundary of half-plane is written
as [

φp(ξ) + φc(ξ)

]
+ ξ

[
φ′p(ξ) + φ′c(ξ)

]
+

[
ψp(ξ) + ψc(ξ)

]
= 0, ξ ∈ Lb. (16)
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Then, substituting Equations (10) - (13) into Equation (16), after some manipulation, gives

φc(ξ) = −ψ̄p(ξ)− ξφ̄′p(ξ), (17)
φ′c(ξ) = −φ̄′p(ξ)− ψ̄′p(ξ)− ξφ̄′′p(ξ), (18)

ψc(ξ) = −φ̄p(ξ) + ξφ̄′p(ξ) + ξψ̄′p(ξ) + ξ2φ̄′′p(ξ), (19)

where φ̄′p(ξ) is an analytic function described by φ̄′p(ξ) = φ′(ξ̄). One obtains φc(ξ) and ψc(ξ) from
the established complex potentials φp(ξ) and ψp(ξ). Hence, from (6) and (8), φ(ξ) and ψ(ξ) are
determined.

The crack problem in a half-plane is fomulated by applying the HSIE and represented by
[N(µ0) + iT (µ0)]p and [N(µ0) + iT (µ0)]c which are the principal and complementary parts re-
spectively. Substituting Equations (10) - (13) into Equation (5) to obtain the [N(µ0) + iT (µ0)]p.
Meanwhile, for the [N(µ0)+iT (µ0)]c, we need to substitute Equations (17) - (19) into Equation (5).
Then, letting ξ approach µ0 and changing dξ̄/dξ by dµ̄/dµ. By taking the observation point µ0 on
the crackL, the tractions are attained. Summing both parts [N(µ0)+iT (µ0)]p and [N(µ0)+iT (µ0)]c
gives the following equations of a single crack problem [4]

[N(µ0) + iT (µ0)] =
1

π
=

∫
L

g(µ)dµ

(µ− µ0)2
+

1

2π

∫
L

ζ1(µ, µ0)g(µ)dµ

+
1

2π

∫
L

ζ2(µ, µ0)g(µ)dµ, µ0 ∈ L
(20)

where the kernals, ζ1 and ζ2 are described as

ζ1(µ, µ0) =− 1

(µ− µ̄0)2
− 2(µ̄0 − µ̄)

(µ− µ̄0)3
− 1

(µ− µ0)2
− 1

(µ− µ̄0)2
dµ̄

dµ
− 1

(µ̄− µ0)2
dµ̄

dµ

+
dµ̄0

dµ0

(
1

(µ− µ̄0)2
dµ̄

dµ
+

1

(µ̄− µ̄0)2
dµ̄

dµ
+

2(µ̄0 − µ0)

(µ− µ̄0)3
dµ̄

dµ

+
6(µ̄0 − µ̄)(µ̄0 − µ0)

(µ− µ̄0)4
+

2(3µ̄0 − 2µ0 − µ̄)

(µ− µ̄0)3

)

ζ2(µ, µ0) =− 1

(µ̄− µ0)2
dµ̄

dµ
− 1

(µ̄− µ0)2
− 1

(µ− µ̄0)2
+

2(µ− µ0)

(µ̄− µ0)3
dµ̄

dµ
+

1

(µ̄− µ̄0)2
dµ̄

dµ
,

+
dµ̄0

dµ0

(
1

(µ− µ̄0)2
+

1

(µ̄− µ̄0)2
+

2(µ0 − µ)

(µ̄− µ̄0)3
dµ̄

dµ
+

2(µ̄0 − µ0)

(µ− µ̄0)3

)
.

LetNj(µj0)+ iTj(µj0) denote the tractions applied at the point µj0 of the crack-j and j = 1, 2, 3
for the triple cracks problems. By superposition of the COD distribution gj(µj) along the crack-j,
HSIE of the triple cracks problem is attained as follows

Nj(µj0) + iTj(µj0) =
1

π
=

∫
L

gj(µj)dµj
(µj − µj0)2

+
1

2π

∫
Lj

ζ1(µj , µj0)gj(µj)dµj +
1

2π

∫
Lj

ζ2(µj , µj0)gj(µj)dµj

+

3∑
k=1

{
1

π

∫
Lk

gk(µk)dµk
(µk − µj0)2

+
1

2π

∫
Lk

ζ1(µk, µj0)gk(µk)dµk

+
1

2π

∫
Lk

ζ2(µk, µj0)gk(µk)dµk

}
+

3∑
m=1

{
1

π

∫
Lm

gm(µm)dµm
(µm − µj0)2

+
1

2π

∫
Lm

ζ1(µm, µj0)gm(µm)dµm +
1

2π

∫
Lm

ζ2(µm, µj0)gm(µm)dµm

}
, µj0 ∈ Lj

(21)
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where j 6= k 6= m.

The equal sign of the first integral signifies the hypersingular integral. Whereas the remaining
integrals are defined as the regular integrals. The effect on crack-j influenced by itself is rep-
resented by the first three integrals, while the other integrals explain the effect of crack-k and
crack-m on crack-j for j = 1, 2, 3 where j 6= k 6= m. Similar formulation can be found in [11].

Then, rewrite the solution (21) in the form of [2]

gj(µj)|µj=µj(sj) =
√
a2 − s2jHj(sj) where Hj(sj) = Hj1(sj) + iHj2(sj) (22)

for j = 1, 2, 3.

3 Numerical Examples

The stress intensity factor (SIF) atDjk of crack-j for j = 1, 2, 3 and crack tips-k for k = 1, 2 are
explained as follows

KDjk = (K1 − iK2)Djk =
√

2π lim
µ→µDjk

√
|µ− µDjk |g

′
j(µj) =

√
πajkFDjk , (23)

where FDjk
= (F1Djk

+ iF2Djk
). F1Djk

and F2Djk
are Mode I and II of nondimensional SIFs at tips

k of crack Dj .

Table 1: The nondimensional SIF of a circular arc crack with different opening angle, α, under shear loading σx = p.

α
SIF 10◦ 20◦ 30◦ 40◦

F1A* 0.9740 0.9009 0.7942 0.6712
F1A** 0.9717 0.8977 0.7818 0.6312
F2A* 0.1723 0.3319 0.4675 0.5708
F2A** 0.1720 0.3318 0.4686 0.5714
F1B* 0.9739 0.9008 0.7943 0.6712
F2B* -0.1723 -0.3318 -0.4675 -0.5708

∗Current study
∗∗[18]

Table 1 displays the behaviour of nondimensional SIFs F1 and F2 of a circular arc crack with
opening angle, α, under shear loading σx = p. It is shown that F1 at the tip of crack A is equal to
F1 at the tip of crackB. Meanwhile F2 at the tip of crackA is equal to negative F2 at the tip of crack
B. From the table, we can analyse that at crack tip A, the values of F1 decreases but F2 increases
as the crack opening angle increases. Our result is in good agreement with those of [18].

3.1 Example 1

Consider three adjacent circular arc cracks with opening angle α1, α2 and α3 in a half-plane
under shear loading and free traction boundary condition as presented in Figures 1(a) and 1(b).
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The space between cracks is described by d and h is the distance between cracks and the boundary
of half-plane. R1, R2 and R3 are the radii of circular arc cracks respectively.

Figure 1(a) shows nondimensional SIFs F1 and F2 at all cracks tips for h/R = 0.2 and α =
α1 = α2 = α3 varies. As α varies, F1 at A1 is equal to F1 at C2 and F1 at A2 is equal to F1 at C1.
It is found that B1 and B2 have the same value of F1 as α increases. When α > 20◦, F2 at A1, B1

and C1 increases opposite to the behaviour of F2 at A2, B2 and C2. Whereas F2 at A2, B2 and C2

increases when α > 60◦.

Figure 1(b) represents the behaviour of F1 and F2 at all cracks tips for α = α1 = α2 = α3 varies
and h/R = 0.2. As α = α1 = α2 = α3 increases, F1 at all cracks tips decreases. F1 at A1 is equal
to F1 at C2, F1 at A2 is equal to F1 at C1 and F1 at B1 is equal to F1 at B2 as h/R varies. When
α > 60◦, at A2, B2 and C2, F2 increases opposite to the behaviour of F2 at A1, B1 and C1.

Figures 1(c) and 1(d) portray the nondimensional SIFs F1 and F2 for h/R varies and α = α1 =
α2 = α3 = 45◦ for the cracks problem in Figure 1(b). As h/R varies, F1 at A1 is equal to F1 at C2,
F1 at A2 is equal to F1 at C1 and F1 at B1 is equal to F1 at B2 (Figure 1(c)). Meanwhile F1 at B2

sharply decreases when h/R > 2.5 (Figure 1(c)). As h/R varies, F2 do not show any significant
difference at all cracks tips (Figure 1(d)). Whereas, when h/R > 3.0, F2 at A1, C1 and B2 slightly
decreases (Figure 1(d)).
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Figure 1: Three adjacent circular arc cracks in a half-plane: (a) and (b) the nondimensional SIFs when α = α1 = α2 = α3 varies and
h/R = 0.2; (c) F1 and (d) F2 for h/R varies and α = α1 = α2 = α3 = 45◦.
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3.2 Example 2

Consider three circular arc cracks with opening angle α and dissimilar radius in a half-plane
subjected to shear stress and free traction boundary condition as shown in Figures 2(a) and 2(c).
R1, R2 and R3 are denoted as radii of circular arc cracks respectively. h is the distance of cracks to
the boundary of half-plane and the space between each crack is defined by d.

Figures 2(a) and 2(b) display the behaviour of F1 and F2 at all cracks tips as α varies and
h/R = 0.1 for the problem of cracks in Figure 2(a). As α increases, F1 at A1 is equal to F1 at A2,
F1 at B1 is equal to F1 at B2 and F1 at C1 is equal to F1 at C2 (Figure 2(a)). When α > 20◦, F2 at
A1 is equal to negative F2 at A2 and F2 at C1 is equal to negative F2 at C2 (Figure 2(b)). Whereas
F2 at B2 increase sharply opposite to the behaviour of F2 at B1 when α > 40◦ (Figure 2(b)).

Figures 2(c) and 2(d) represent the nondimensional SIFs F1 and F2 when h/R = 0.1 and α
varies for the cracks problem in Figure 2(c). F1 at B1 and B2 increases as α increases (Figure
2(c)). When α > 70◦, F2 at B2 has the highest value of SIF opposite to the behaviour of F2 at B1

(Figure 2(d)).
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Figure 2: Three circular arc cracks problem with dissimilar radius in a half-plane: (a), (b), (c) and (d) the nondimensional SIFs when α
varies and h/R = 0.1.
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3.3 Example 3

Consider three circular arc cracks in series with opening angle α1, α2 and α3 in a half-plane
subjected to shear stress and free traction boundary condition as shown in Figures 3(a) and 3(b).
R1, R2 and R3 are defined as radii of circular arc cracks respectively. The space between cracks is
d and h is the distance of cracks to the boundary of half-plane.
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Figure 3: Three circular arc cracks in series in a half-plane: (a) and (b) the nondimensional SIFs when α = α1 = α2 = α3 varies and
h/R = 0.5; (c) F1 and (d) F2 for h/R varies and α = α1 = α2 = α3 = 45◦.

Figure 3(a) portrays the nondimensional SIFs for both F1 and F2 at all cracks tips as α = α1 =
α2 = α3 varies and h/R = 0.5. It is found that F1 at A1 is equal to F1 at A2, F1 at B1 is equal to F1

at B2 and F1 at C1 is equal to F1 at C2 as α increases. F1 decreases as α increases at all cracs tips.
When α > 20◦, F2 at A1, B1 and C1 increases but F2 at A2, B2 and C2 decreases. Whereas F2 at
A1, B1 and C1 decreases when α > 70◦ opposite to the behaviour of F2 at A2, B2 and C2.

Figure 3(b) displays the nondimensional SIFs F1 and F2 for h/R = 0.5 and α = α1 = α2 = α3

varies. As α increases, F1 at all cracks tips decreases. It is observed that F2 at A1, B1 and C1

increases but F2 at A2, B2 and C2 decreases when α > 20◦. Meanwhile when α > 70◦, F2 at
A2, B2 and C2 increases opposite to the behaviour of F2 at A1, B1 and C1.

Figures 3(c) and 3(d) show the nondimensional SIFs F1 and F2 when h/R varies and α =
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α1 = α2 = α3 = 45◦ for the cracks problem in Figure 3(a). F1 at all cracks tips remains constant
as h/R increases (Figure 3(c)). As h/R increases, F2 at A1 is equal to negative F2 at A2, F2 at B1

is equal to negative F2 at B2 and F2 at C1 is equal to negative F2 at C2 (Figure 3(d)).

4 Conclusions

In this paper, three circular arc cracks problem subjected to shear loading in a half-plane elas-
ticity is considered. By applying the free traction boundary condition, the problem is formulated
into HSIE associated with the modified complex potentials. Appropriate quadrature formulas is
utilised to solve the equations numerically. From the results, we can analyse that the behaviour of
nondimensional SIFs for both Mode I and II at all cracks tips is influenced by the crack opening
angle of circular arc cracks and the distance between cracks to the boundary of half-plane. As the
angle increases and the distance of cracks closer to the boundary of half-plane, SIF increases. The
strength of material decreases as SIF increases.
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